A calibration framework for discrete element model parameters using genetic algorithms

Journal Article (2018)
Author(s)

Huy Do (TU Delft - Transport Engineering and Logistics)

Alejandro M. Aragón (TU Delft - Computational Design and Mechanics)

D.L. Schott (TU Delft - Transport Engineering and Logistics)

Research Group
Transport Engineering and Logistics
DOI related publication
https://doi.org/10.1016/j.apt.2018.03.001
More Info
expand_more
Publication Year
2018
Language
English
Research Group
Transport Engineering and Logistics
Issue number
6
Volume number
29
Pages (from-to)
1393-1403

Abstract

In this research, a universal framework for automated calibration of microscopic properties of modeled granular materials is proposed. The proposed framework aims at industrial scale applications, where optimization of the computational time step is important. It can be generally applied to all types of DEM simulation setups. It consists of three phases: data base generation, parameter optimization, and verification. In the first phase, DEM simulations are carried out on a multi-dimensional grid of sampled input parameter values to generate a database of macroscopic material responses. The database and experimental data are then used to interpolate the objective functions with respect to an arbitrary set of parameters. In the second phase, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to solve the calibration multi-objective optimization problem. In the third phase, the DEM simulations using the results of the calibrated input parameters are carried out to calculate the macroscopic responses that are then compared with experimental measurements for verification and validation. The proposed calibration framework has been successfully demonstrated by a case study with two-objective optimization for the model accuracy and the simulation time. Based on the concept of Pareto dominance, the trade-off between these two conflicting objectives becomes apparent. Through verification and validation steps, the approach has proven to be successful for accurate calibration of material parameters with the optimal simulation time.

No files available

Metadata only record. There are no files for this record.