Mixed finite element methods with convection stabilization for the large eddy simulation of incompressible turbulent flows

Journal Article (2016)
Author(s)

Oriol Colomes (International Centre for Numerical Methods in Engineering (CIMNE))

Santiago Badia (International Centre for Numerical Methods in Engineering (CIMNE), Universitat Politecnica de Catalunya)

Javier Principe (International Centre for Numerical Methods in Engineering (CIMNE), Universitat Politecnica de Catalunya)

Affiliation
External organisation
DOI related publication
https://doi.org/10.1016/j.cma.2016.02.026
More Info
expand_more
Publication Year
2016
Language
English
Affiliation
External organisation
Volume number
304
Pages (from-to)
294-318

Abstract

The variational multiscale method thought as an implicit large eddy simulation model for turbulent flows has been shown to be an alternative to the widely used physical-based models. This method is traditionally combined with equal-order velocity-pressure pairs, since it provides pressure stabilization. In this work, we consider a different approach, based on inf-sup stable elements and convection-only stabilization. In order to do so, we consider a symmetric projection stabilization of the convective term using an orthogonal subscale decomposition. The accuracy and efficiency of this method compared with residual-based algebraic subgrid scales and orthogonal subscales methods for equal-order interpolation is assessed in this paper. Moreover, when inf-sup stable elements are used, the grad-div stabilization term has been shown to be essential to guarantee accurate solutions. Hence, a study of the influence of such term in the large eddy simulation of turbulent incompressible flows is also performed. Furthermore, a recursive block preconditioning strategy has been considered for the resolution of the problem with an implicit treatment of the projection terms. Two different benchmark tests have been solved: the Taylor-Green Vortex flow with Re=1600, and the Turbulent Channel Flow at Reτ=395 and Reτ=590.

No files available

Metadata only record. There are no files for this record.