Interaction-induced supercurrent in quantum Hall setups

Journal Article (2019)
Author(s)

Xiao Li Huang (Kavli institute of nanoscience Delft)

Yuli V. Nazarov (TU Delft - QN/Nazarov Group, Kavli institute of nanoscience Delft)

Research Group
QN/Nazarov Group
DOI related publication
https://doi.org/10.1103/PhysRevB.100.155411
More Info
expand_more
Publication Year
2019
Language
English
Research Group
QN/Nazarov Group
Issue number
15
Volume number
100
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Recently, we have proposed an unusual mechanism of superconducting current that is specific for quantum Hall edge channels connected to superconducting electrodes. We have shown that the supercurrent can be mediated by a nonlocal electron-electron interaction that provides an opportunity for a long-distance information transfer in the direction opposite to the electron flow. A convenient model for such interaction is that of an external circuit. The consideration has been performed for the case of a single channel. In order to facilitate the experimental verification and the observation of peculiar features of the effect, in this paper, we provide a more detailed description of the phenomenon and extend the results to more sophisticated setups. We establish that the dynamical phase contributes to superconducting interference; this being the manifestation of the channel chirality. We consider setups that include the scattering between quantum Hall channels of opposite direction and multiple superconducting contacts. For a single quantum Hall constriction, we derive a general and comprehensive relation for the interaction-induced supercurrent in terms of scattering amplitudes and demonstrate the nonlocal nature of the current by considering its sensitivity to scattering. In multiterminal setups, we reveal the characteristic phase dependences of the supercurrents explaining those in terms of interference of Andreev reflection processes. For more complex setups encompassing, at least, two constrictions, we find an interplay between noninteracting and interaction-induced currents and contributions of more complex interference processes.