Fretting wear behavior of thermal-oxidation on titanium alloy in air and vacuum atmosphere

Journal Article (2021)
Authors

Liangliang Sheng (Southwest Jiaotong University)

Xiangtao Deng (Northeastern University China)

Hao Li (Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University)

Yuxuan Ren (Southwest Jiaotong University)

Guoqing Gou (Southwest Jiaotong University)

Xiaojun Xu (Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Novel Aerospace Materials)

Zhaodong Wang (Northeastern University China)

Minhao Zhu (Southwest Jiaotong University)

Research Group
Novel Aerospace Materials
To reference this document use:
https://doi.org/10.1142/S0217979221501356
More Info
expand_more
Publication Year
2021
Language
English
Research Group
Novel Aerospace Materials
Issue number
9
Volume number
35
DOI:
https://doi.org/10.1142/S0217979221501356

Abstract

In this work, an in-situ XPS analysis test combined self-designed high precision fretting wear tester was carried out to study the fretting wear behavior and the resulting tribo-oxidation of thermal-oxidation film on Ti6Al4V titanium alloy under the varied working atmosphere. The fretting-induced tribo-oxidation under the air and vacuum (4 × 10-3 Pa) environment was analyzed and its response on the resulting fretting wear resistance and damage mechanism was discussed. Results show that the working environment plays a significant role in the formation of tribo-oxidation and then determining the fretting wear resistance. Thermal-oxidation film in the vacuum atmosphere shows a better fretting wear resistance than that in the air atmosphere for all fretting regimes, except for partial slip regime (PSR) where there is an equivalent fretting wear resistance. Compared with the substrate Ti6Al4V titanium alloy, the thermal-oxidation film in the vacuum atmosphere performs a good protection for titanium alloy, especially for slip regime (SR), but not applied for air atmosphere.

No files available

Metadata only record. There are no files for this record.