Numerical Approaches for Investigating Quasiconvexity in the Context of Morrey’s Conjecture

Journal Article (2022)
Author(s)

Jendrik Voss (Technische Uni­ver­si­tät Dort­mund, Universität Duisburg-Essen)

R. Martin (Universität Duisburg-Essen, TU Delft - Structural Integrity & Composites)

Oliver Sander (Technische Universität Dresden)

Siddhant Kumar (TU Delft - Team Sid Kumar)

Dennis M. Kochmann (ETH Zürich)

Patrizio Neff (Universität Duisburg-Essen)

Research Group
Team Sid Kumar
Copyright
© 2022 Jendrik Voss, R.P. Martin, Oliver Sander, Siddhant Kumar, Dennis M. Kochmann, Patrizio Neff
DOI related publication
https://doi.org/10.1007/s00332-022-09820-x
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 Jendrik Voss, R.P. Martin, Oliver Sander, Siddhant Kumar, Dennis M. Kochmann, Patrizio Neff
Research Group
Team Sid Kumar
Issue number
6
Volume number
32
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Deciding whether a given function is quasiconvex is generally a difficult task. Here, we discuss a number of numerical approaches that can be used in the search for a counterexample to the quasiconvexity of a given function W. We will demonstrate these methods using the planar isotropic rank-one convex function Wmagic+(F)=λmaxλmin-logλmaxλmin+logdetF=λmaxλmin+2logλmin,where λmax≥ λmin are the singular values of F, as our main example. In a previous contribution, we have shown that quasiconvexity of this function would imply quasiconvexity for all rank-one convex isotropic planar energies W: GL +(2) → R with an additive volumetric-isochoric split of the form W(F)=Wiso(F)+Wvol(detF)=W~iso(FdetF)+Wvol(detF)with a concave volumetric part. This example is therefore of particular interest with regard to Morrey’s open question whether or not rank-one convexity implies quasiconvexity in the planar case.