A Chebyshev criterion with applications
A. Gasull (Universitat Autònoma de Barcelona)
A. Geyer (TU Delft - Mathematical Physics)
F. Mañosas (Universitat Autònoma de Barcelona)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We show that a family of certain definite integrals forms a Chebyshev system if two families of associated functions appearing in their integrands are Chebyshev systems as well. We apply this criterion to several examples which appear in the context of perturbations of periodic non-autonomous ODEs to determine bounds on the number of isolated periodic solutions, as well as to persistence problems of periodic solutions for perturbed Hamiltonian systems.