Responsible innovation, anticipation and responsiveness
case studies of algorithms in decision support in justice and security, and an exploration of potential, unintended, undesirable, higher-order effects
Marc Steen (TNO)
Tjerk Timan (TNO)
Ibo Poel (TU Delft - Ethics & Philosophy of Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The collection and use of personal data on citizens in the design and deployment of algorithms in the domain of justice and security is a sensitive topic. Values like fairness, autonomy, privacy, accuracy, transparency and property are at stake. Negative examples of algorithms that propagate or exacerbate biases, inequalities or injustices have received ample attention, both in academia and in popular media. To supplement this view, we will discuss two positive examples of Responsible Innovation (RI): the design and deployment of algorithms in decision support, with good intentions and careful approaches. We then explore potential, unintended, undesirable, higher-order effects of algorithms—effects that may occur despite good intentions and careful approaches. We do that by engaging with anticipation and responsiveness, two key dimensions of Responsible Innovation. We close the paper with proposing a framework and a series of tentative recommendations to promote anticipation and responsiveness in the design and deployment of algorithms in decision support in the domain of justice and security.