The effect of the intrinsic electrical matrix conductivity on the piezoelectric charge constant of piezoelectric composites

Journal Article (2019)
Author(s)

V.L. Stuber (TU Delft - Novel Aerospace Materials)

Tadhg Mahon (TU Delft - Novel Aerospace Materials)

S van der Zwaag (TU Delft - Novel Aerospace Materials)

W. A. Groen (TU Delft - Aerospace Structures & Materials)

Research Group
Novel Aerospace Materials
Copyright
© 2019 V.L. Stuber, T.R. Mahon, S. van der Zwaag, W.A. Groen
DOI related publication
https://doi.org/10.1088/2053-1591/ab5bb3
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 V.L. Stuber, T.R. Mahon, S. van der Zwaag, W.A. Groen
Research Group
Novel Aerospace Materials
Issue number
1
Volume number
7
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Polymer-piezoceramic composites have drawn a lot of attention for sensor and energy harvesting applications. Poling such materials can be difficult due to the electric field getting mostly distributed over the low dielectric constant matrix. During this process, the electrical matrix conductivity plays a vital role. This work shows how two different polymer materials, loaded with various piezoelectric ceramic fillers, have very different poling efficiencies simply due to their intrinsic matrix conductivity. It is shown how temperature increases the matrix conductivity, and hence, increases the piezoelectric charge constant of the composites. By choosing the proper matrix material under the proper conditions, piezoelectric composites can be poled at electric fields as low as 2 kV mm-1, which is identical to that of bulk ceramic fillers. In addition, the matrix conductivity can be altered by aging the composites in a high humidity atmosphere, which can increase the piezoelectric charge constant in similar fashion. This is a simple method to increase the matrix conductivity, and hence the piezoelectric charge constant, without the need to add any conductive fillers into the composites, which increase complexity, and leads to an increased dielectric losses.