Hydrodynamics of in-canopy flow in synthetically generated coral reefs under oscillatory wave motion

Journal Article (2025)
Author(s)

A. Patil (TU Delft - Urban Data Science)

C. Garcia Sanchez (TU Delft - Urban Data Science)

Research Group
Urban Data Science
DOI related publication
https://doi.org/10.1016/j.coastaleng.2025.104840
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Urban Data Science
Volume number
202
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The interaction of oscillatory wave motion with morphologically complex coral reefs showcases a wide range of consequential hydrodynamic responses within the canopy. While a large body of literature has explored the interaction of morphologically simple coral reefs, the in-canopy flow dynamics in complex coral reefs are poorly understood. This study used a synthetically generated coral reef over flat topography with varying reef height and frontal and planform density to understand the in-canopy turbulence dynamics. Using a turbulence-resolving computational framework, we found that most of the turbulent kinetic energy dissipation is confined to a region below the top of the reef and above the Stokes boundary layer. The results also suggest that most of the vertical Reynolds stress peaks within this region positively contribute to the down-gradient momentum flux during the wave cycle. These findings shed light on the physical relationships between in-canopy flow and morphologically complex coral reefs, thereby motivating a further need to explore the hydrodynamics of such flows using a scale-resolving computational framework.