Velocity field measurements under Very Large Floating Structures interacting with surface waves
E. Uksul (TU Delft - Multi Phase Systems)
A. Laskari (TU Delft - Multi Phase Systems)
S. Schreier (TU Delft - Ship Hydromechanics and Structures)
C Poelma (TU Delft - Process and Energy)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Increasing utilization of ocean space and a global push for renewable energy solutions has spurred interest in wave behavior around Very Large Floating Structures, like floating photovoltaic (PV) systems. Flexible PV modules may be more suitable for the varying wave conditions found in offshore environments. However, while viscoelastic models are commonly used for wave prediction, they show notable discrepancies with experiments, likely due to untested assumptions of inviscid flow. This experimental study aims to fill that gap by investigating both the wave characteristics and velocity fields underneath flexible and rigid structures using simultaneous Particle Image Velocimetry (PIV) and wave elevation measurements. Wave attenuation is observed for short wavelengths over the flexible structure length. The 2nd order Stokes wave theory provides a good approximation of the wave-induced horizontal velocity profiles under the flexible structure but underestimates the velocities under the rigid one which further lacks the typical exponential decay with water depth. The presence of a wave boundary layer is showcased and compared to an adaptation of the Stokes 2nd problem.