Fast 1D NMR imaging of clay sedimentation using a multi-slice stepper motor method
Nick J. Hol (Eindhoven University of Technology)
Leo Pel (Eindhoven University of Technology)
Martijn Kurvers (Eindhoven University of Technology)
C. Chassagne (TU Delft - Environmental Fluid Mechanics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This study introduces a fast 1D nuclear magnetic resonance (NMR) imaging method based on multi-slice imaging with a stepper motor to study sedimentation dynamics of clayey soils. Traditional NMR is limited by long acquisition times due to water’s T1 relaxation time. Our approach combines multi-slice imaging with a stepper motor and frequency-based selection, reducing measurement time while maintaining sub-millimeter resolution, at the same time overcoming the limitations by the slow relaxation of water. This nondestructive method provides detailed insights into the sedimentation and consolidation of suspensions, including pore size distribution and density profiles within a single measurement. The technique is demonstrated with kaolinite clay suspensions, highlighting the technique’s ability to capture the dynamics of gravity-driven systems rapidly and accurately, even for fast-sedimenting soils such as kaolinite in the first hours of sedimentation. This advancement is valuable for geotechnical and environmental applications where understanding sedimentation is crucial.