MOF-Derived Multi-heterostructured Composites for Enhanced Photocatalytic Hydrogen Evolution

Deciphering the Roles of Different Components

Journal Article (2022)
Research Group
ChemE/O&O groep
Copyright
© 2022 M.Z. Hussain, Zhuxian Yang, B. van der Linden, Werner R. Heinz, Mounib Bahri, Ovidiu Ersen, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 M.Z. Hussain, Zhuxian Yang, B. van der Linden, Werner R. Heinz, Mounib Bahri, Ovidiu Ersen, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia
Research Group
ChemE/O&O groep
Issue number
19
Volume number
36
Pages (from-to)
12212-12225
DOI:
https://doi.org/10.1021/acs.energyfuels.2c02319
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Bimetal-organic-framework (Bi-MOF) NH2-MIL-125(Ti/Cu)-derived nanocomposites are systematically investigated to elucidate the role of individual species TiO2, CuxO and the porous carbon matrix in photocatalytic activity. Among the studied samples, the TiO2/CuxO/C nanocomposite derived from heat processing NH2-MIL-125(Ti/Cu) under Ar/H2O vapor demonstrates the highest photocatalytic H2 evolution performance due to the formation of a phasejunction between the well-crystallized anatase/rutile TiO2 polymorph, the optimized and codoped nitrogen/carbon in the composites, the formation of p-n heterojunctions between the TiO2 and CuxO nanoparticles, as well as their uniform distribution in a hydrophilic porous carbon matrix decorated with N and carboxylic functional groups. These parameters enable the in situ-formed multi-heterostructures in these nanocomposites to not only possess relatively narrower energy band gaps and improved spatial charge separation due to the formed type-II staggered p-n heterojunctions but also offer multiple pathways for charge diffusion, resulting in lower charge-transfer resistance, suppressed bulk charge recombination, and consequently, much improved visible-light absorption. Therefore, the Bi-MOF NH2-MIL-125(Ti/Cu)-derived TiO2/CuxO/C nanocomposite provides easily accessible active sites with an excellent photocatalytic H2 evolution activity of 3147 μmol gcat-1 h-1, 99 times higher than that of bare TiO2. This work provides a simple one-step approach to producing tunable novel nanocomposites for efficient photocatalytic H2 evolution without using expensive noble metals as cocatalysts.