Growth-ring effect on moisture-induced stress and damage development in glued laminated timber

Journal Article (2025)
Author(s)

Taoyi Yu (Technische Universität München)

Franziska Seeber (Technische Universität München)

Ani Khaloian Sarnaghi (Technische Universität München)

J. W G van de Kuilen (Technische Universität München, TU Delft - Bio-based Structures & Materials)

Research Group
Bio-based Structures & Materials
DOI related publication
https://doi.org/10.1007/s00226-025-01647-5
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Bio-based Structures & Materials
Issue number
4
Volume number
59
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Humidity fluctuations are a leading cause of damage in wooden constructions. In the case of glulam products, the multitude of possible layups concerning pith locations, diverse material properties across wood species, and the high computational cost associated with multi-field analysis have constrained many research efforts to focus on one specific glulam layup, consequently limiting the generalizability of the findings. To address this challenge, Monte Carlo simulations were employed to assess the significance of various factors. Based on which, two levels of simplification are proposed. The first level reduces the multi-layer problem to a single-layer one by applying appropriate boundary conditions. It substantially reduces the simulation costs and consequently facilitates sophisticated damage analysis, revealing the varying damage pattern across different board types. The second level of simplification further reduces the problem to a single-element model, enabling an analytical estimation of moisture stress. This level of simplification elucidates how factors such as moisture difference, material rotational angle, and other material properties influence the moisture-induced stress. Most importantly, it facilitates a rapid estimation of the critical moisture fluctuation range and the preferred sawing location of boards for different wood species, which can provide guidance to the production of higher moisture resistant glulam.