Self-Triggered Control for Near-Maximal Average Inter-Sample Time
G. De Albuquerque Gleizer (TU Delft - Team Manuel Mazo Jr)
K.N. Madnani (TU Delft - Team Manuel Mazo Jr)
M. Mazo (TU Delft - Team Manuel Mazo Jr)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Self-triggered control (STC) is a sample-and-hold control method aimed at reducing communications in networked-control systems; however, existing STC mechanisms often maximize how late the next sample is, thus not optimizing sampling performance in the long-term. In this work, we devise a method to construct self-triggered policies that provide near-maximal average inter-sample time (AIST) while respecting given control performance constraints. To achieve this, we rely on finite-state abstractions of a reference event-triggered control, while also allowing earlier samples. These early triggers constitute controllable actions of the abstraction, for which an AIST-maximizing strategy can be obtained by solving a mean-payoff game. We provide optimality bounds, and how to further improve them through abstraction refinement techniques.