Understanding pilot biodynamical feedthrough coupling in helicopter adverse roll axis instability via lateral cyclic feedback control

Journal Article (2016)
Author(s)

G. Tod (CNRS)

M. D. Pavel (TU Delft - Control & Simulation)

F Malburet (CNRS)

J Gomand (CNRS)

PJ Barre (CNRS)

Research Group
Control & Simulation
Copyright
© 2016 G. Tod, M.D. Pavel, F Malburet, J Gomand, PJ Barre
DOI related publication
https://doi.org/10.1016/j.ast.2016.10.003
More Info
expand_more
Publication Year
2016
Language
English
Copyright
© 2016 G. Tod, M.D. Pavel, F Malburet, J Gomand, PJ Barre
Research Group
Control & Simulation
Volume number
59
Pages (from-to)
18–31
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The paper reassesses the mechanism of biodynamical feedthrough coupling to helicopter body motion in lateral-roll helicopter tasks. An analytical bio-aeroelastic pilot–vehicle model is first developed and tested for various pilot’s neuromuscular adaptions in the lateral/roll axis helicopter tasks. The results demonstrate that pilot can destabilize the low-frequency regressing lead-lag rotor mode; however he/she is destabilizing also the high-frequency advancing lag rotor mode. The mechanism of pilot destabilization involves three vicious energy circles, i.e. lateral-roll, flap-roll and flap-lag motions, in a very similar manner as in the air resonance phenomenon. For both modes, the destabilization is very sensitive to an increase of the steady state rotor coning angle that increases the energy transfers from flap to lag motion through Coriolis forces. The analytical linear time-invariant model developed in this paper can be also used to investigate designs proneness to lateral/roll aeroelastic rotorcraft–pilot couplings.

Files

Post_print_Understanding_pilot... (pdf)
(pdf | 1.84 Mb)
- Embargo expired in 01-12-2018