Overview of Engineering Carbon Nanomaterials such as Carbon Nanotubes (CNTs), Carbon Nanofibers (CNFs), Graphene and Nanodiamonds and Other Carbon Allotropes inside Porous Anodic Alumina (PAA) Templates

Review (2023)
Author(s)

L.N. Sacco (TU Delft - Electronic Components, Technology and Materials)

S. Vollebregt (TU Delft - Electronic Components, Technology and Materials)

Research Group
Electronic Components, Technology and Materials
Copyright
© 2023 L.N. Sacco, S. Vollebregt
DOI related publication
https://doi.org/10.3390/nano13020260
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 L.N. Sacco, S. Vollebregt
Research Group
Electronic Components, Technology and Materials
Issue number
2
Volume number
13
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The fabrication and design of carbon-based hierarchical structures with tailored nano-architectures have attracted the enormous attention of the materials science community due to their exceptional chemical and physical properties. The collective control of nano-objects, in terms of their dimensionality, orientation and size, is of paramount importance to expand the implementation of carbon nanomaterials across a large variety of applications. In this context, porous anodic alumina (PAA) has become an attractive template where the pore morphologies can be straightforwardly modulated. The synthesis of diverse carbon nanomaterials can be performed using PAA templates, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), and nanodiamonds, or can act as support for other carbon allotropes such as graphene and other carbon nanoforms. However, the successful growth of carbon nanomaterials within ordered PAA templates typically requires a series of stages involving the template fabrication, nanostructure growth and finally an etching or electrode metallization steps, which all encounter different challenges towards a nanodevice fabrication. The present review article describes the advantages and challenges associated with the fabrication of carbon materials in PAA based materials and aims to give a renewed momentum to this topic within the materials science community by providing an exhaustive overview of the current synthesis approaches and the most relevant applications based on PAA/Carbon nanostructures materials. Finally, the perspective and opportunities in the field are presented.