Multiple sparse representations classification

Journal Article (2015)
Author(s)

Esben Plenge (Erasmus MC, Technion Israel Institute of Technology)

S. Klein (Erasmus MC)

W.J. Niessen (Erasmus MC)

H.W. Meijering (Erasmus MC)

Department
Biomechanical Engineering
DOI related publication
https://doi.org/10.1371/journal.pone.0131968
More Info
expand_more
Publication Year
2015
Language
English
Department
Biomechanical Engineering
Issue number
7
Volume number
10

Abstract

Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy.We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level.

No files available

Metadata only record. There are no files for this record.