Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs

Journal Article (2017)
Author(s)

Thais Grancha (Universidad de Valencia (ICMol))

Marta Mon (Universidad de Valencia (ICMol))

Jesús Ferrando-Soria (Universidad de Valencia (ICMol))

Jorge Gascon (TU Delft - ChemE/Catalysis Engineering)

Beatriz Seoane (TU Delft - ChemE/Catalysis Engineering)

Enrique V. Ramos-Fernández (University of Alicante)

Donatella Armentano (University of Calabria)

Emilio Pardo (Universidad de Valencia (ICMol))

ChemE/Catalysis Engineering
DOI related publication
https://doi.org/10.1039/c7ta01179b
More Info
expand_more
Publication Year
2017
Language
English
ChemE/Catalysis Engineering
Issue number
22
Volume number
5
Pages (from-to)
11032-11039

Abstract

Purification of methane from other light hydrocarbons in natural gas is a topic of intense research due to its fundamental importance in the utilization of natural gas fields. Porous materials have emerged as excellent alternative platforms to conventional cryogenic methodologies to perform this task in a cost- and energy-efficient manner. Here we report a new family of isoreticular chiral MOFs, prepared from oxamidato ligands derived from natural amino acids l-alanine, l-valine and l-leucine, where, by increasing the length of the alkyl residue of the amino acid, the charge density of the MOF's channels can be tuned (1 > 2 > 3), decreasing the adsorption preference towards methane over light hydrocarbons thus improving this purification process. The validity of our rational design strategy has been proved by a combination of single-component adsorption isotherms, adsorption kinetics of CH4, C2H6, C3H8 and n-C4H10, and breakthrough experiments of binary CH4/C2H6 and CH4/C3H8 mixtures.

No files available

Metadata only record. There are no files for this record.