Predicting density wave amplification of settling slurries using a 1D Driftux model

More Info
expand_more

Abstract

Density wave amplification in hydraulic transport pipelines forms a high risk to operational continuity, as density waves can lead to system blockages or centrifugal pump drive failures. Recent experimental research, in pipelines which contain long vertical sections, has shown that density waves can amplify at velocities far exceeding the deposit limit velocity, previously thought to be a limiting condition for amplification. The typical design methodology of hydraulic transport pipelines is based on a steady-state philosophy, which assumes that the mixture velocity and sediment concentration are constant in time and space. However, these variations can lead to the amplification of density waves. This article discusses the cause of a new type of density wave amplification mechanism, which is related to slurry dynamics in a pipeline containing vertical sections. This research also presents a 1D Driftflux CFD model which models the aforementioned slurry dynamics and can predict density wave amplification.