Deep-learning method for data association in particle tracking

Journal Article (2020)
Author(s)

Yao Yao (Erasmus MC)

Ihor Smal (TU Delft - Optical and Laser Remote Sensing, Erasmus MC)

Ilya Grigoriev (Universiteit Utrecht)

Anna Akhmanova (Universiteit Utrecht)

Erik Meijering (University of New South Wales, Erasmus MC)

Research Group
Optical and Laser Remote Sensing
DOI related publication
https://doi.org/10.1093/bioinformatics/btaa597
More Info
expand_more
Publication Year
2020
Language
English
Research Group
Optical and Laser Remote Sensing
Issue number
19
Volume number
36
Pages (from-to)
4935-4941

Abstract

MOTIVATION: Biological studies of dynamic processes in living cells often require accurate particle tracking as a first step toward quantitative analysis. Although many particle tracking methods have been developed for this purpose, they are typically based on prior assumptions about the particle dynamics, and/or they involve careful tuning of various algorithm parameters by the user for each application. This may make existing methods difficult to apply by non-expert users and to a broader range of tracking problems. Recent advances in deep-learning techniques hold great promise in eliminating these disadvantages, as they can learn how to optimally track particles from example data. RESULTS: Here, we present a deep-learning-based method for the data association stage of particle tracking. The proposed method uses convolutional neural networks and long short-term memory networks to extract relevant dynamics features and predict the motion of a particle and the cost of linking detected particles from one time point to the next. Comprehensive evaluations on datasets from the particle tracking challenge demonstrate the competitiveness of the proposed deep-learning method compared to the state of the art. Additional tests on real-time-lapse fluorescence microscopy images of various types of intracellular particles show the method performs comparably with human experts. AVAILABILITY AND IMPLEMENTATION: The software code implementing the proposed method as well as a description of how to obtain the test data used in the presented experiments will be available for non-commercial purposes from https://github.com/yoyohoho0221/pt_linking. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

No files available

Metadata only record. There are no files for this record.