Sailing through uncertainty: ship pipe routing and the energy transition
B.T. Markhorst (Vrije Universiteit Amsterdam)
J. Berkhout (Vrije Universiteit Amsterdam)
A. Zocca (Vrije Universiteit Amsterdam)
J.F.J. Pruyn (TU Delft - Ship Design, Production and Operations)
R.D. van der Mei (Vrije Universiteit Amsterdam)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The energy transition from fossil fuels to sustainable alternatives makes the design of future-proof ships even more important. In the design phase of a ship, it is uncertain how many and which fuels it will use in the future due to many external factors. In fact, a ship typically sails for decades, increasing the likelihood that it will use different fuels during its lifetime. Pipe route design is expensive and time-consuming, mainly done by hand. Motivated by this, in previous research, we have proposed a mathematical optimization framework for automatic pipe routing under uncertainty of the energy transition. In this paper, we build on the state-of-the-art by implementing design constraints in mathematical models based on discussions with maritime design experts. Additionally, we apply these models to realistic, complex situations of a commercial ship design company. Our experiments show that location-dependent installation costs, which reflect reality, increase the usefulness of stochastic optimization compared to deterministic and robust optimization. Additionally, to prepare for a possible transition to more sustainable fuels, we recommend installing suitable pipes near the engine room upfront to prevent expensive retrofits in the future.