Hierarchical Event-Triggered Systems: Safe Learning of Quasi-Optimal Deadline Policies
Pio Ong (California Institute of Technology)
Manuel Mazo Espinosa (TU Delft - Team Manuel Mazo Jr)
Aaron D. Ames (California Institute of Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We present a hierarchical architecture to improve the efficiency of event-triggered control (ETC) in reducing resource consumption. This paper considers event-triggered systems generally as an impulsive control system in which the objective is to minimize the number of impulses. Our architecture recognizes that traditional ETC is a greedy strategy towards optimizing average inter-event times and introduces the idea of a deadline policy for the optimization of long-term discounted inter-event times. A lower layer is designed employing event-triggered control to guarantee the satisfaction of control objectives, while a higher layer implements a deadline policy designed with reinforcement learning to improve the discounted inter-event time. We apply this scheme to the control of an orbiting spacecraft, showing superior performance in terms of actuation frequency reduction with respect to a standard (one-layer) ETC while maintaining safety guarantees.
Files
File under embargo until 26-08-2025