Segmentation-Free Estimation of Length Distributions Using Sieves and RIA Morphology.

More Info
expand_more

Abstract

Length distributions can be estimated using a class of morphological sieves constructed with a so-called Rotation-Invariant, Anisotropic (RIA) morphology. The RIA morphology can only be computed from an (intermediate) morphological orientation space, which is produced by a morphological operation with rotated versions of an anisotropic structuring element. This structuring element is defined as an isotropic region in a subspace of the image space (i.e. it has fewer dimensions than the image). A closing or opening in this framework discriminates on various object lengths, such as the longest or shortest internal diameter. Applied in a sieve, they produce a length distribution. This distribution is obtained from grey-value images, avoiding the need for segmentation. We apply it to images of rice kernels. The distributions thus obtained are compared with measurements on binarized objects in the same images.

No files available

Metadata only record. There are no files for this conference paper.