Numerical Investigation of Rail Longitudinal Vibration Mode on Corrugation Formation

Conference Paper (2024)
Author(s)

P. Zhang (TU Delft - Railway Engineering)

Z. Li (TU Delft - Railway Engineering)

Research Group
Railway Engineering
DOI related publication
https://doi.org/10.1007/978-3-031-66971-2_114
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Railway Engineering
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Pages (from-to)
1108-1117
ISBN (print)
9783031669705
ISBN (electronic)
978-3-031-66971-2
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Short pitch corrugation is a typical defect on rail surfaces that induces high level of noise and increases maintenance costs. Despite numerous research efforts, corrugation development mechanism has not yet been fully understood and root-cause solutions have not been developed. This work numerally simulates the rail corrugation in the V-Track test rig, aiming to better understand corrugation mechanism and also link the scaled laboratory tests to the full-scale reality. A three-dimensional finite element model of the V-Track is established to simulate the vehicle-track dynamic interaction. The fastening and ballast parameters are calibrated by fitting the simulated track receptances to hammer tests. Rail corrugation with a major wavelength of 5.7 mm is successfully reproduced using the FE model, which shares features similar to the experimentally produced corrugation in the V-Track. The numerical simulation demonstrates that a rail longitudinal compression mode at 790 Hz is the ‘wavelength-fixing’ mechanism of corrugation in the V-Track, agreeing with the experimental results. This work numerically verifies the dominance of the rail longitudinal vibration modes on corrugation formation.

Files

978-3-031-66971-2_114.pdf
(pdf | 3.79 Mb)
- Embargo expired in 01-05-2025
License info not available