Numerical Investigation of Rail Longitudinal Vibration Mode on Corrugation Formation
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Short pitch corrugation is a typical defect on rail surfaces that induces high level of noise and increases maintenance costs. Despite numerous research efforts, corrugation development mechanism has not yet been fully understood and root-cause solutions have not been developed. This work numerally simulates the rail corrugation in the V-Track test rig, aiming to better understand corrugation mechanism and also link the scaled laboratory tests to the full-scale reality. A three-dimensional finite element model of the V-Track is established to simulate the vehicle-track dynamic interaction. The fastening and ballast parameters are calibrated by fitting the simulated track receptances to hammer tests. Rail corrugation with a major wavelength of 5.7 mm is successfully reproduced using the FE model, which shares features similar to the experimentally produced corrugation in the V-Track. The numerical simulation demonstrates that a rail longitudinal compression mode at 790 Hz is the ‘wavelength-fixing’ mechanism of corrugation in the V-Track, agreeing with the experimental results. This work numerically verifies the dominance of the rail longitudinal vibration modes on corrugation formation.