Guidance and Control Implementation with Spiking Neural Networks

A feasibility study

Master Thesis (2024)
Author(s)

T. Avarvarei (TU Delft - Aerospace Engineering)

Contributor(s)

Christophe De de Wagter – Mentor (TU Delft - Control & Simulation)

S. Stroobants – Mentor (TU Delft - Control & Simulation)

Robin Ferede – Graduation committee member (TU Delft - Control & Simulation)

Faculty
Aerospace Engineering
More Info
expand_more
Publication Year
2024
Language
English
Graduation Date
18-07-2024
Awarding Institution
Delft University of Technology
Programme
Aerospace Engineering
Faculty
Aerospace Engineering
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Quadrotors have continuously leveraged the use of artificial intelligence for navigation and decision-making. Moreover, neuromorphic computing, specifically Spiking Neural Networks (SNNs), is considered as an energy-efficient solution during inference. The current study will analyse the effects of implementing SNNs for mimicking energy optimal guidance and control. To achieve this, population encoding is used and an equivalent of 7-8 spiking neurons per conventional neuron is found to preserve most of the information. The equivalent controller prefers fast adaptation which requires small spiking threshold values and minimal reliance on past information. To improve the controller performance, dataset selection is of utmost importance with a careful trade-off between excessive race track customisation and generalisability being required. The results show that learning is feasible and SNN performance approaches conventional state-of-the-art models trained with multi-layer perceptrons. The current analysis represent an important step towards the rapid guidance and control of ultra-small energy efficient quadrotors.

Files

License info not available