An Agent-Based Approach for the Planning of Distribution Grids as a Socio-Technical System
Luciano Cavalcante Cavalcante Siebert (TU Delft - Interactive Intelligence)
Alexandre R Aoki (Federal University of Paraná)
Germano Lambert-Torres (Gnarus Institute)
Nelson Lambert-de-Andrada (Gnarus Institute)
Nikolaos G. Paterakis (Eindhoven University of Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Recent developments, such as smart metering, distributed energy resources, microgrids, and energy storage, have led to an exponential increase in system complexity and have emphasized the need to include customer behavior and social and cultural backgrounds in planning activities. This paper analyzes how emergent behavior in electricity consumption can affect the planning of distribution grids with a smart grid vision. For this, an agent-based model that uses insights from the field of behavioral economics to differentiate four consumer categories (high income, low income, middle class, and early adopters) was used. The model was coupled with a real distribution feeder and customer load curve data, and the results showed that heterogeneity of customer’s preferences, values, and behavior led to very distinct load growth patterns. The results emphasize the relevance of modeling customer’s behavioral aspects in planning increasingly complex power systems.