Regret Analysis of Learning-Based Linear Quadratic Gaussian Control with Additive Exploration
Archith Athrey (Student TU Delft)
Othmane Mazhar (Université Paris Cité Grands)
Meichen Guo (TU Delft - Team Meichen Guo)
BHK Schutter (TU Delft - Delft Center for Systems and Control)
Shengling Shi (TU Delft - Team Bart De Schutter)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this paper, we analyze the regret incurred by a computationally efficient exploration strategy, known as naive exploration, for controlling unknown partially observable systems within the Linear Quadratic Gaussian (LQG) framework. We introduce a two-phase control algorithm called LQG-NAIVE, which involves an initial phase of injecting Gaussian input signals to obtain a system model, followed by a second phase of an interplay between naive exploration and control in an episodic fashion. We show that LQG-NAIVE achieves a regret growth rate of Õ(√T), i.e., O(√T) up to logarithmic factors after T time steps, and we validate its performance through numerical simulations. Additionally, we propose LQG-IF2E, which extends the exploration signal to a 'closed-loop' setting by incorporating the Fisher Information Matrix (FIM). We provide compelling numerical evidence of the competitive performance of LQG-IF2E compared to LQG-NAIVE.