An Underactuated Control System Design for Adaptive Autopilot of Fixed-Wing Drones
S Baldi (Southeast University, TU Delft - Team Bart De Schutter)
Spandan Roy (International Institute of Information Technology)
Kang Yang (Southeast University)
Di Liu (Rijksuniversiteit Groningen, Southeast University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Effective design of autopilots for fixed-wing unmanned aerial vehicles (UAVs) is still a great challenge, due to unmodeled effects and uncertainties that these vehicles exhibit during flight. Unmodeled effects and uncertainties comprise longitudinal/lateral cross-couplings, as well as poor knowledge of equilibrium points (trimming points) of the UAV dynamics. The main contribution of this article is a new adaptive autopilot design, based on uncertain Euler-Lagrange dynamics of the UAV and where the control can explicitly take into account under-actuation in the dynamics, reduced structural knowledge of cross-couplings and trimming points. This system uncertainty is handled via appropriately designed adaptive laws: stability of the controlled UAV is analyzed. Hardware-in-the-loop tests, comparisons with an Ardupilot autopilot and with a robustified autopilot validate the effectiveness of the control design, even in the presence of strong saturation of the UAV actuators.