On Learning from Human Expert Knowledge for Automated Scheduling
N. Yorke-Smith (TU Delft - Algorithmics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Automated scheduling systems and decision support tools require at least four kinds of knowledge: 1) domain knowledge, 2) problem instance knowledge, 3) control knowledge, and 4) solving knowledge. This short paper draws attention to learning from human experts for these different kinds of knowledge, and advocates a complementarity of knowledge acquisition by automated techniques and by human knowledge engineers.