Vector-Valued Extensions of Operators Through Multilinear Limited Range Extrapolation

More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 E. Lorist, Z. Nieraeth
Research Group
Analysis
Issue number
5
Volume number
25
Pages (from-to)
2608-2634
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

We give an extension of Rubio de Francia’s extrapolation theorem for functions taking values in UMD Banach function spaces to the multilinear limited range setting. In particular we show how boundedness of an m-(sub)linear operator T:Lp1(w1p1)×⋯×Lpm(wmpm)→Lp(wp) for a certain class of Muckenhoupt weights yields an extension of the operator to Bochner spaces L p (w p ; X) for a wide class of Banach function spaces X, which includes certain Lebesgue, Lorentz and Orlicz spaces. We apply the extrapolation result to various operators, which yields new vector-valued bounds. Our examples include the bilinear Hilbert transform, certain Fourier multipliers and various operators satisfying sparse domination results.