Turbulent flow of a suspension of rigid spherical particles in plane channels

More Info
expand_more

Abstract

Suspensions of solid particles are frequently found in applications and environmental flows. Several studies concern the rheological properties of suspensions in laminar flows, but much less is known of turbulent suspensions. The present work fills this gap providing DNS data on dense suspensions of neutrally-buoyant rigid sphere in a turbulent channel flow at the bulk Reynolds number of Re = U0h/ν = 2800. We show that considering volume fractions Φ ≤ 0.1 the turbulent flow is similar to the unladen case with higher turbulence intensities. On the contrary, the flow behavior strongly changes at Φ = 0.2where the turbulence appears to be attenuated.