The electromechanical damping of piezo actuator resonances
Theory and practice
W. Merlijn van Spengen (TU Delft - Micro and Nano Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Piezo actuators have very desirable properties, such as a high stiffness and extreme position resolution, but suffer from electromechanical resonances that complicate their use in high-speed applications. These resonances can be minimized by using resistive or resistive-inductive damping. In this paper a comprehensive theory is presented which describes these piezo resonances, and the mechanism by which these resonances are minimized by adding electrical damping components. The theory is based on a purely electronic model, and uses an electrical-mechanical transformation to describe actual piezo displacements. Using this theory, an ‘optimal’ value of damping resistance is readily identified. This optimal resistance causes maximal damping of the primary resonance of the piezo. It is shown that damping with a combination of a resistor and an inductor can theoretically be even better. An optical displacement setup was developed, and frequency- and time-domain measurements were performed that validate the theory. The mechanical damping of the piezo actuator needs to be included in the theory to obtain a good fit with the electrical and mechanical behavior of an actual piezo actuator.