Unextendible product bases, uncompletable product bases and bound entanglement
David P. DiVincenzo (IBM Thomas J. Watson Research Centre)
Tal Mor (University of California)
Peter W. Shor (AT and T Research)
John A. Smolin (IBM Thomas J. Watson Research Centre)
B.M. Terhal (IBM Thomas J. Watson Research Centre)
More Info
expand_more
Abstract
We report new results and generalizations of our work on unextendible product bases (UPB), uncompletable product bases and bound entanglement. We present a new construction for bound entangled states based on product bases which are only completable in a locally extended Hilbert space. We introduce a very useful representation of a product basis, an orthogonality graph. Using this representation we give a complete characterization of unextendible product bases for two qutrits. We present several generalizations of UPBs to arbitrary high dimensions and multipartite systems. We present a sufficient condition for sets of orthogonal product states to be distinguishable by separable superoperators. We prove that bound entangled states cannot help increase the distillable entanglement of a state beyond its regularized entanglement of formation assisted by bound entanglement.
No files available
Metadata only record. There are no files for this record.