On optimization of stochastic max–min-plus-scaling systems

An approximation approach

Journal Article (2017)
Author(s)

Samira S. Farahani

A.J.J. Van Den Boom (TU Delft - Team Bart De Schutter)

B De Schutter (TU Delft - Team Bart De Schutter)

Research Group
Team Bart De Schutter
DOI related publication
https://doi.org/10.1016/j.automatica.2017.05.001
More Info
expand_more
Publication Year
2017
Language
English
Research Group
Team Bart De Schutter
Volume number
83
Pages (from-to)
20-27

Abstract

A large class of discrete-event and hybrid systems can be described by a max–min-plus-scaling (MMPS) model, i.e., a model in which the main operations are maximization, minimization, addition, and scalar multiplication. Accordingly, optimization of MMPS systems appears in different problems defined for discrete-event and hybrid systems. For a stochastic MMPS system, this optimization problem is computationally highly demanding as often numerical integration has to be used to compute the objective function. The aim of this paper is to decrease such computational complexity by applying an approximation method that is based on the moments of a random variable and that can be computed analytically.

No files available

Metadata only record. There are no files for this record.