Dynamical fitness models
evidence of universality classes for preferential attachment graphs
Alessandra Cipriani (TU Delft - Applied Probability)
Andrea Fontanari (TU Delft - Numerical Analysis, Centrum Wiskunde & Informatica (CWI))
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this paper we define a family of preferential attachment models for random graphs with fitness in the following way: independently for each node, at each time step a random fitness is drawn according to the position of a moving average process with positive increments. We will define two regimes in which our graph reproduces some features of two well-known preferential attachment models: the Bianconi-Barabási and Barabási-Albert models. We will discuss a few conjectures on these models, including the convergence of the degree sequence and the appearance of Bose-Einstein condensation in the network when the drift of the fitness process has order comparable to the graph size.