Bimodule coefficients, Riesz transforms on Coxeter groups and strong solidity

More Info
expand_more
Publication Year
2024
Language
English
Research Group
Analysis
Issue number
2
Volume number
18
Pages (from-to)
501-549
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

In deformation-rigidity theory, it is often important to know whether certain bimodules are weakly contained in the coarse bimodule. Consider a bimodule H over the group algebra C[Γ] with Γ a discrete group. The starting point of this paper is that if a dense set of the so-called coefficients of H is contained in the Schatten Sp class p 2 [2; 1/, then the n-fold tensor power HΓ˝n for n ≥ p2 is quasi-contained in the coarse bimodule. We apply this to gradient bimodules associated with the carré du champ of a symmetric quantum Markov semi-group. For Coxeter groups, we give a number of characterizations of having coefficients in Sp for the gradient bimodule constructed from the word length function. We get equivalence of: (1) the gradient-Sp property introduced by the second named author, (2) smallness at infinity of a natural compactification of the Coxeter group, and for a large class of Coxeter groups, (3) walks in the Coxeter diagram called parity paths. We derive several strong solidity results. In particular, we extend current strong solidity results for right-angled Hecke von Neumann algebras beyond right-angled Coxeter groups that are small at infinity. Our general methods also yield a concise proof of a result by Sinclair for discrete groups admitting a proper cocycle into a p-integrable representation.