Towards parallel time-stepping for the numerical simulation of atherosclerotic plaque growth

Journal Article (2023)
Author(s)

Stefan Frei (Universität Konstanz)

A. Heinlein (TU Delft - Numerical Analysis)

Research Group
Numerical Analysis
Copyright
© 2023 Stefan Frei, A. Heinlein
DOI related publication
https://doi.org/10.1016/j.jcp.2023.112347
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 Stefan Frei, A. Heinlein
Research Group
Numerical Analysis
Volume number
491
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The numerical simulation of atherosclerotic plaque growth is computationally prohibitive, since it involves a complex cardiovascular fluid-structure interaction (FSI) problem with a characteristic time scale of milliseconds to seconds, as well as a plaque growth process governed by reaction-diffusion equations, which takes place over several months. In this work we combine a temporal homogenization approach, which separates the problem in computationally expensive FSI problems on a micro scale and a reaction-diffusion problem on the macro scale, with parallel time-stepping algorithms. It has been found in the literature that parallel time-stepping algorithms do not perform well when applied directly to the FSI problem. To circumvent this problem, a parareal algorithm is applied on the macro-scale reaction-diffusion problem instead of the micro-scale FSI problem. We investigate modifications in the coarse propagator of the parareal algorithm, in order to further reduce the number of costly micro problems to be solved. The approaches are tested in detailed numerical investigations based on serial simulations.

Files

1_s2.0_S0021999123004424_main.... (pdf)
(pdf | 1.77 Mb)
- Embargo expired in 15-01-2024
License info not available