Nonlinear iterative learning control for discriminating between disturbances

Journal Article (2025)
Author(s)

Leontine Aarnoudse (Eindhoven University of Technology)

Alexey Pavlov (Norwegian University of Science and Technology (NTNU))

Tom Oomen (TU Delft - Team Jan-Willem van Wingerden, Eindhoven University of Technology)

Research Group
Team Jan-Willem van Wingerden
DOI related publication
https://doi.org/10.1016/j.automatica.2024.111902
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Team Jan-Willem van Wingerden
Volume number
171
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Disturbances in iterative learning control (ILC) may be amplified if these vary from one iteration to the next, and reducing this amplification typically reduces the convergence speed. The aim of this paper is to resolve this trade-off and achieve fast convergence, robustness and small converged errors in ILC. A nonlinear learning approach is presented that uses the difference in amplitude characteristics of repeating and varying disturbances to adapt the learning gain. Monotonic convergence of the nonlinear ILC algorithm is established, resulting in a systematic design procedure. Application of the proposed algorithm demonstrates both fast convergence and small errors.