Vectorial integer bootstrapping
flexible integer estimation with application to GNSS
P.J.G. Teunissen (TU Delft - Mathematical Geodesy and Positioning, University of Melbourne, Curtin University)
L. Massarweh (TU Delft - Mathematical Geodesy and Positioning)
S. Verhagen (TU Delft - Mathematical Geodesy and Positioning)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this contribution, we extend the principle of integer bootstrapping (IB) to a vectorial form (VIB). The mathematical definition of the class of VIB-estimators is introduced together with their pull-in regions and other properties such as probability bounds and success rate approximations. The vectorial formulation allows sequential block-by-block processing of the ambiguities based on a user-chosen partitioning. In this way, flexibility is created, where for specific choices of partitioning, tailored VIB-estimators can be designed. This wide range of possibilities is discussed, supported by numerical simulations and analytical examples. Further guidelines are provided, as well as the possible extension to other classes of estimators.