Active flow control of a turbulent separation bubble through deep reinforcement learning
Bernat Font (TU Delft - Ship Hydromechanics)
Francisco Alcántara-Ávila (KTH Royal Institute of Technology)
Jean Rabault (Independent researcher)
Ricardo Vinuesa (KTH Royal Institute of Technology)
Oriol Lehmkuhl (Barcelona Supercomputing Center)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The control efficacy of classical periodic forcing and deep reinforcement learning (DRL) is assessed for a turbulent separation bubble (TSB) at Reτ=180 on the upstream region before separation occurs. The TSB can resemble a separation phenomenon naturally arising in wings, and a successful reduction of the TSB can have practical implications in the reduction of the aviation carbon footprint. We find that the classical zero-net-mas-flux (ZNMF) periodic control is able to reduce the TSB by 15.7%. On the other hand, the DRL-based control achieves 25.3% reduction and provides a smoother control strategy while also being ZNMF. To the best of our knowledge, the current test case is the highest Reynolds-number flow that has been successfully controlled using DRL to this date. In future work, these results will be scaled to well-resolved large-eddy simulation grids. Furthermore, we provide details of our open-source CFD–DRL framework suited for the next generation of exascale computing machines.