Ceramic membrane filtration for oily wastewater treatment

Basics, membrane fouling and fouling control

Review (2024)
Author(s)

M. Chen (TU Delft - Sanitary Engineering)

Sebastiaan Heijman (TU Delft - Sanitary Engineering)

L.C. Rietveld (TU Delft - Sanitary Engineering)

Research Group
Sanitary Engineering
DOI related publication
https://doi.org/10.1016/j.desal.2024.117727
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Sanitary Engineering
Volume number
583
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Membrane technology presents an effective solution for treating oily wastewater, a significant environmental hazard stemming from industries such as food processing, metalworking, and oil extraction. Compared to polymeric membranes, ceramic ones exhibit superior mechanical, chemical, and thermal stability, enabling more effective oil removal and easier cleaning. Despite their advantages, membrane fouling remains a challenge, impacting the efficiency of oily wastewater treatment. This review explores oily wastewater characteristics and ceramic membrane applications in treatment processes. It examines the factors influencing ceramic membrane fouling, including wastewater properties (e.g., oil concentration, pH), membrane characteristics (e.g., surface hydrophilicity, charge), and operational parameters (e.g., cross-flow velocity, permeate flux). Strategies to mitigate fouling, such as pretreatment, backpulsing/backwashing for sustained operation, and chemical cleaning for fouling removal, are discussed. By using pretreatment, membrane fouling can be reduced. Backpulsing/backwashing is effective to maintain a long-term operation. Chemical cleaning is effective in removing irreversible fouling and restoring the performance of the ceramic membranes. Moreover, membrane modification techniques that enhance performance are highlighted. Ultimately, the review identifies that effective fouling control is crucial for optimizing ceramic membrane use in oily wastewater treatment, underscoring the need for ongoing research in this area.