Temporal Dynamics in Human Pose Estimation Models

Monitoring people without cameras: Privacy is important!

Bachelor Thesis (2024)
Author(s)

D. Savastre (TU Delft - Electrical Engineering, Mathematics and Computer Science)

Contributor(s)

G. Vaidya – Mentor (TU Delft - Networked Systems)

Marco Zuñiga Zamalloa – Mentor (TU Delft - Networked Systems)

M. Weinmann – Graduation committee member (TU Delft - Computer Graphics and Visualisation)

Faculty
Electrical Engineering, Mathematics and Computer Science
More Info
expand_more
Publication Year
2024
Language
English
Graduation Date
26-06-2024
Awarding Institution
Delft University of Technology
Project
['CSE3000 Research Project']
Programme
['Computer Science and Engineering']
Faculty
Electrical Engineering, Mathematics and Computer Science
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Human Pose Estimation using Millimeter Wave radars has emerged as a promising alternative to traditional camera-based systems, addressing privacy and deployment constraints. While state-of-the-art Deep Learning models predominantly focus on spatial feature extraction to determine the positions of key points in the human body, this research investigates the effects of incorporating temporal dynamics in such models. It focuses of modifying an existing state-of-the-art spatial model to account for temporal dynamics and compares the performance of the two models. Long Short-Term Memory networks are used to capture temporal dependencies between frames of point clouds which significantly boosts the precision of key point detection. The proposed temporal model demonstrates a 53% reduction in Mean Absolute Error and a 45% reduction in Root Mean Squared Error compared to state-of-the-art model. Moreover, these improvements were achieved with a less complex model architecture and similar training times. The robustness of the model was further validated on a different dataset, showcasing its potential for broad application in fields such as healthcare, sports analysis, traffic monitoring and robotics. This study underscores the efficacy of temporal dynamics in pose estimation, and showcases the advantages of accounting for temporal dependencies when evaluating more complex movements.

Files

License info not available