Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors
D. Hoàng Ánh (TU Delft - ChemE/Transport Phenomena)
Cees Haringa (TU Delft - ChemE/Transport Phenomena)
L. Portela (TU Delft - ChemE/Transport Phenomena)
M.T. Kreutzer (TU Delft - ChemE/Product and Process Engineering)
C. R. Kleijn (TU Delft - ChemE/Transport Phenomena)
Volkert van Steijn (TU Delft - ChemE/Product and Process Engineering)
More Info
expand_more
Abstract
This paper reports an analysis of the parallelized production of bubbles in a microreactor based on the repeated break-up of bubbles at T-junctions linked in series. We address the question how to design and operate such a multi-junction device for the even distribution of bubbles over the exit channels. We study the influence of the three primary sources leading to the uneven distribution of bubbles: (1) nonuniformity in the size of bubbles fed to the distributor, (2) lack of bubble break-up, and (3) asymmetric bubble breakup caused by asymmetries in flow due to fabrication tolerances. Based on our theoretical and experimental analysis, we formulate two guidelines to operate the multi-junction bubble distributor. The device should be operated such that: (i) the capillary number exceeds a critical value at all junctions, Ca>CacritCa>Cacrit, to ensure that all bubbles break, and (ii) the parameter (ls/w)·Ca1/3(ls/w)·Ca1/3is sufficiently large, with ls/wls/w the distance between the bubbles normalized by the channel width. More quantitatively, (ls/w)·Ca1/3>2(ls/w)·Ca1/3>2 for fabrication tolerances below 2%, which are typical for devices made by soft lithography. Furthermore, we address the question whether including a bypass channel around the T-junctions reduces flow asymmetries and corresponding nonuniformities in bubble size. While bubble nonuniformities in devices with and without bypass channels are comparable for fabrication tolerances of a few percent, we find that incorporating a bypass channels does have a beneficial effect for larger fabrication tolerances. The results presented in this paper facilitate the scale-out of bubble-based microreactors.
No files available
Metadata only record. There are no files for this record.