An adaptive approach to zooming-based control for uncertain systems with input quantization
Niko Moustakis (TU Delft - Team Jan-Willem van Wingerden)
Shuai Yuan (TU Delft - Team Bart De Schutter)
S Baldi (TU Delft - Team Bart De Schutter)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper establishes an adaptive tracking approach for linear systems with parametric uncertainties, when input measurements are quantized due to the presence of a communication network closing the control loop. In order to address the tracking problem, a novel dynamic quantizer with dynamic offset is introduced and embedded into an adaptive hybrid control strategy based on zooming mechanism. A Lyapunov-based approach is used to derive the adaptive adjustments for the control gains and for the dynamic range and dynamic offset of the quantizer: it is proven analytically that the proposed adjustments guarantee asymptotic state tracking. Quantized adaptive control of an electrohydraulic system is given as an example of the effectiveness of the designed control methodology.