Multilinear transference of Fourier and Schur multipliers acting on non-commutative Lp-spaces

Journal Article (2022)
Author(s)

M. Caspers (TU Delft - Analysis)

Amudhan Krishnaswamy-Usha (TU Delft - Analysis)

Gerrit Vos (TU Delft - Analysis)

Research Group
Analysis
Copyright
© 2022 M.P.T. Caspers, A. Krishnaswamy Usha, G.M. Vos
DOI related publication
https://doi.org/10.4153/S0008414X2200058X
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 M.P.T. Caspers, A. Krishnaswamy Usha, G.M. Vos
Research Group
Analysis
Issue number
6
Volume number
75
Pages (from-to)
1986-2006
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Let G be a locally compact unimodular group, and let φ be some function of n variables on G. To such a φ, one can associate a multilinear Fourier multiplier, which acts on some n-fold product of the noncommutative L
p-spaces of the group von Neumann algebra. One may also define an associated Schur multiplier, which acts on an n-fold product of Schatten classes S
p(L
2(G). We generalize well-known transference results from the linear case to the multilinear case. In particular, we show that the so-called multiplicatively bounded (p1,....,pn)-norm"of a multilinear Schur multiplier is bounded above by the corresponding multiplicatively bounded norm of the Fourier multiplier, with equality whenever the group is amenable. Furthermore, we prove that the bilinear Hilbert transform is not bounded as a vector-valued map L
p1(R,S
p1) × L
p2 (R,S
p2), → L
1(R,S
1), whenever p1 and p2 are such that {equation presented}. A similar result holds for certain Calderón-Zygmund-type operators. This is in contrast to the nonvector-valued Euclidean case.