Martingale solutions to the stochastic thin-film equation in two dimensions

Journal Article (2024)
Author(s)

M. Sauerbrey (TU Delft - Analysis)

Research Group
Analysis
Copyright
© 2024 M. Sauerbrey
DOI related publication
https://doi.org/10.1214/22-AIHP1328
More Info
expand_more
Publication Year
2024
Language
English
Copyright
© 2024 M. Sauerbrey
Research Group
Analysis
Issue number
1
Volume number
60
Pages (from-to)
373-412
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

We construct solutions to the stochastic thin-film equation with quadratic mobility and Stratonovich gradient noise in the physically relevant dimension d = 2 and allow in particular for solutions with non-full support. The construction relies on a Trotter–Kato time-splitting scheme, which was recently employed in d = 1. The additional analytical challenges due to the higher spatial dimension are overcome using α-entropy estimates and corresponding tightness arguments.

Files

AIHP1328_published_version.pdf
(pdf | 0.578 Mb)
- Embargo expired in 01-08-2024
License info not available