Predictive heuristic control

Inferring risks from heterogeneous nowcast accuracy

Journal Article (2023)
Author(s)

Job van der Werf (TU Delft - Sanitary Engineering)

Zoran Kapelan (TU Delft - Sanitary Engineering)

J.G. Langeveld (TU Delft - Sanitary Engineering)

Research Group
Sanitary Engineering
Copyright
© 2023 Job van der Werf, Z. Kapelan, J.G. Langeveld
DOI related publication
https://doi.org/10.2166/wst.2023.027
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 Job van der Werf, Z. Kapelan, J.G. Langeveld
Research Group
Sanitary Engineering
Issue number
4
Volume number
87
Pages (from-to)
1009-1028
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Urban Drainage Systems can cause ecological and public health issues by releasing untreated contaminated water into the environment. Real-time control (RTC), augmented with rainfall nowcast, can effectively reduce these pollution loads. This research aims to identify key dynamics in the nowcast accuracies and relate those to the performance of nowcast-informed rule-based (RB)-RTC procedures. The developed procedures are tested in the case study of Rotterdam, the Netherlands. Using perfect nowcast data, all developed procedures showed a reduction in combined sewer overflow volumes of up to 14.6%. Considering real nowcast data, it showed a strong ability to predict if no more rain was expected, whilst performing poorly in quantifying rainfall depths. No relation was found in the nowcast accuracy and the consistency of the predicted rainfall using a moving horizon. Using the real nowcast data, all procedures, with the exception of the one predicting the end of the rainfall event, showed a significant risk of operative deterioration (performing worse than the baseline RB-RTC), linked to the relative performance of the nowcast algorithm. Understanding the strengths of a nowcast algorithm can ensure the reliability of the RB-RTC procedure and can negate the need for detailed modelling studies by inferring risks from nowcast data.