Low-Complexity Equalization of MIMO-OSDM
Jing Han (Northwestern Polytechnical University)
Shengqian Ma (Northwestern Polytechnical University)
Yujie Wang (Northwestern Polytechnical University)
G. Leus (TU Delft - Signal Processing Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Orthogonal signal-division multiplexing (OSDM) is an attractive alternative to conventional orthogonal frequency-division multiplexing (OFDM) due to its enhanced ability in peak-to-average power ratio (PAPR) reduction. Combining OSDM with multiple-input multiple-output (MIMO) signaling has the potential to achieve high spectral and power efficiency. However, a direct channel equalization in this case incurs a cubic complexity, which may be expensive for practical use. To solve the problem, low-complexity per-vector and block equalization algorithms of MIMO-OSDM are proposed in this paper for time-invariant and time-varying channels, respectively. By exploiting the channel matrix structures, these algorithms have only a linear complexity in the transformed domain. Simulation results demonstrate their validity and the related performance comparisons.