Investigation on the Functionality of Thermoresponsive Origami Structures

Journal Article (2020)
Author(s)

Mehrshad Mehrpouya (HZ University of Applied Sciences, Sapienza University of Rome)

Ali Azizi (Sapienza University of Rome)

Shahram Janbaz (TU Delft - Biomaterials & Tissue Biomechanics)

Annamaria Gisario (Sapienza University of Rome)

Research Group
Biomaterials & Tissue Biomechanics
DOI related publication
https://doi.org/10.1002/adem.202000296
More Info
expand_more
Publication Year
2020
Language
English
Research Group
Biomaterials & Tissue Biomechanics
Issue number
8
Volume number
22

Abstract

Additive manufacturing (AM) has recently been introduced as a reliable technique for the fabrication of highly complex geometries that were not possible before. Due to the flexibility in the organization of material properties such as responsive elements in space, AM is now a capable technology for the production of smart structures that can transform their geometry, for example, from a compact state to a deployed configuration. Among others, fused deposition modeling (FDM) can reliably be used to manufacture polymeric constructs with high resolution. Polylactide (PLA), the most popular polymer in FDM printing is a shape-memory polymer. Therefore, the manufacturing of shape-transforming constructs can be simplified to the construction of foldable products that can be programmed simply by applying mechanical forces. Origami can then be used as a simple platform in which the shape-transforming of a programmed construct is via the folding of material through the thinner sections (hinges). Herein, PLA and FDM are used to fabricate foldable structures. The effects of different parameters namely total thickness, layer height, nozzle temperature, and activation temperature on the shape recovery of the manually programmed origami structures are then investigated.

No files available

Metadata only record. There are no files for this record.