Holistic Processing of Sawdust to Enable Sustainable Hybrid Li-Ion Capacitors

Journal Article (2024)
Author(s)

Xiaoyang Guo (Norwegian University of Science and Technology (NTNU))

Dick van de Kleut (Beyonder AS, Sandnes)

J. Zhang (The Hong Kong Polytechnic University)

C. Chen (TU Delft - RST/Storage of Electrochemical Energy)

Xuehang Wang (TU Delft - RST/Storage of Electrochemical Energy)

Tianye Zheng (The Hong Kong Polytechnic University)

Steven Boles (Norwegian University of Science and Technology (NTNU))

Research Group
RST/Storage of Electrochemical Energy
DOI related publication
https://doi.org/10.1007/s11837-024-06542-1
More Info
expand_more
Publication Year
2024
Language
English
Research Group
RST/Storage of Electrochemical Energy
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Issue number
7
Volume number
76
Pages (from-to)
3557-3566
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Activated carbon has long been recognized as a promising electrode material for energy storage devices. The extraordinarily high specific area makes it challenging to replace in supercapacitors since electrical double-layer capacitors need such surfaces but also porous networks to enable electrolyte penetration. As a raw material for synthesizing activated carbon, sawdust offers key benefits, such as its renewability, abundance, favorable physical attributes for energy storage, and a more environmentally friendly synthesis process compared to mined alternative sources. In this work, electrochemical characterization is carried out which highlights the critical role of pelletization in enhancing the capacitive performance of sawdust-derived activated carbon, in addition to the implicit handling and logistical benefits. Subsequently, a Li-ion capacitor is assembled with an organic solvent-based electrolyte, sawdust-derived activated carbon serving as the positive electrode, and an Al-based foil negative electrode, potentially combining high energy and power density materials into a hybrid device. Despite commendable electrochemical performance and the use of a sustainable waste-derived positive electrode with a commoditized negative electrode, challenges remain regarding the ability to mitigate the role of surface functional groups that are stabilized by bio-carbon thermal treatments. Nevertheless, this distinctive architecture holds promise as an alternative high-power energy storage technology for a future filled with renewable energy, electric vehicles, and portable electronic devices.

Files

S11837-024-06542-1.pdf
(pdf | 2.42 Mb)
- Embargo expired in 15-10-2024
License info not available